{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Rename and Replace "
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd "
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# read a dataset of UFO reports into a DataFrame\n",
"ufo = pd.read_csv('http://bit.ly/uforeports')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" City | \n",
" Colors Reported | \n",
" Shape Reported | \n",
" State | \n",
" Time | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Ithaca | \n",
" NaN | \n",
" TRIANGLE | \n",
" NY | \n",
" 6/1/1930 22:00 | \n",
"
\n",
" \n",
" 1 | \n",
" Willingboro | \n",
" NaN | \n",
" OTHER | \n",
" NJ | \n",
" 6/30/1930 20:00 | \n",
"
\n",
" \n",
" 2 | \n",
" Holyoke | \n",
" NaN | \n",
" OVAL | \n",
" CO | \n",
" 2/15/1931 14:00 | \n",
"
\n",
" \n",
" 3 | \n",
" Abilene | \n",
" NaN | \n",
" DISK | \n",
" KS | \n",
" 6/1/1931 13:00 | \n",
"
\n",
" \n",
" 4 | \n",
" New York Worlds Fair | \n",
" NaN | \n",
" LIGHT | \n",
" NY | \n",
" 4/18/1933 19:00 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" City Colors Reported Shape Reported State Time\n",
"0 Ithaca NaN TRIANGLE NY 6/1/1930 22:00\n",
"1 Willingboro NaN OTHER NJ 6/30/1930 20:00\n",
"2 Holyoke NaN OVAL CO 2/15/1931 14:00\n",
"3 Abilene NaN DISK KS 6/1/1931 13:00\n",
"4 New York Worlds Fair NaN LIGHT NY 4/18/1933 19:00"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# examine the first 5 rows \n",
"ufo.head()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['City', 'Colors Reported', 'Shape Reported', 'State', 'Time'], dtype='object')"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# examine the column names \n",
"ufo.columns"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Rename "
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# rename two of the columns by useing `rename` method\n",
"ufo.rename(columns={'Colors Reported': 'Colors_Reported', 'Shape Reported': 'Shape_Reported'}, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" City | \n",
" Colors_Reported | \n",
" Shape_Reported | \n",
" State | \n",
" Time | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Ithaca | \n",
" NaN | \n",
" TRIANGLE | \n",
" NY | \n",
" 6/1/1930 22:00 | \n",
"
\n",
" \n",
" 1 | \n",
" Willingboro | \n",
" NaN | \n",
" OTHER | \n",
" NJ | \n",
" 6/30/1930 20:00 | \n",
"
\n",
" \n",
" 2 | \n",
" Holyoke | \n",
" NaN | \n",
" OVAL | \n",
" CO | \n",
" 2/15/1931 14:00 | \n",
"
\n",
" \n",
" 3 | \n",
" Abilene | \n",
" NaN | \n",
" DISK | \n",
" KS | \n",
" 6/1/1931 13:00 | \n",
"
\n",
" \n",
" 4 | \n",
" New York Worlds Fair | \n",
" NaN | \n",
" LIGHT | \n",
" NY | \n",
" 4/18/1933 19:00 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" City Colors_Reported Shape_Reported State Time\n",
"0 Ithaca NaN TRIANGLE NY 6/1/1930 22:00\n",
"1 Willingboro NaN OTHER NJ 6/30/1930 20:00\n",
"2 Holyoke NaN OVAL CO 2/15/1931 14:00\n",
"3 Abilene NaN DISK KS 6/1/1931 13:00\n",
"4 New York Worlds Fair NaN LIGHT NY 4/18/1933 19:00"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ufo.head()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['city', 'colors reported', 'shape reported', 'state', 'time'], dtype='object')"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# replace all of the column names by overwritting the 'colums' attribute \n",
"ufo_cols = ['city', 'colors reported', 'shape reported', 'state', 'time']\n",
"ufo.columns = ufo_cols\n",
"# see modified columns \n",
"ufo.columns"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# replace the column names during the file reading process by using the 'names' parameter\n",
"ufo = pd.read_csv('http://bit.ly/uforeports', names=ufo_cols)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" city | \n",
" colors reported | \n",
" shape reported | \n",
" state | \n",
" time | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" City | \n",
" Colors Reported | \n",
" Shape Reported | \n",
" State | \n",
" Time | \n",
"
\n",
" \n",
" 1 | \n",
" Ithaca | \n",
" NaN | \n",
" TRIANGLE | \n",
" NY | \n",
" 6/1/1930 22:00 | \n",
"
\n",
" \n",
" 2 | \n",
" Willingboro | \n",
" NaN | \n",
" OTHER | \n",
" NJ | \n",
" 6/30/1930 20:00 | \n",
"
\n",
" \n",
" 3 | \n",
" Holyoke | \n",
" NaN | \n",
" OVAL | \n",
" CO | \n",
" 2/15/1931 14:00 | \n",
"
\n",
" \n",
" 4 | \n",
" Abilene | \n",
" NaN | \n",
" DISK | \n",
" KS | \n",
" 6/1/1931 13:00 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" city colors reported shape reported state time\n",
"0 City Colors Reported Shape Reported State Time\n",
"1 Ithaca NaN TRIANGLE NY 6/1/1930 22:00\n",
"2 Willingboro NaN OTHER NJ 6/30/1930 20:00\n",
"3 Holyoke NaN OVAL CO 2/15/1931 14:00\n",
"4 Abilene NaN DISK KS 6/1/1931 13:00"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# examine the 5 rows \n",
"ufo.head()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['city', 'colors_reported', 'shape_reported', 'state', 'time'], dtype='object')"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# replace all spaces with underscores in the column names by using the 'str.replace' method\n",
"ufo.columns = ufo.columns.str.replace(' ', '_')\n",
"ufo.columns"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" city | \n",
" colors_reported | \n",
" shape_reported | \n",
" state | \n",
" time | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" City | \n",
" Colors Reported | \n",
" Shape Reported | \n",
" State | \n",
" Time | \n",
"
\n",
" \n",
" 1 | \n",
" Ithaca | \n",
" NaN | \n",
" TRIANGLE | \n",
" NY | \n",
" 6/1/1930 22:00 | \n",
"
\n",
" \n",
" 2 | \n",
" Willingboro | \n",
" NaN | \n",
" OTHER | \n",
" NJ | \n",
" 6/30/1930 20:00 | \n",
"
\n",
" \n",
" 3 | \n",
" Holyoke | \n",
" NaN | \n",
" OVAL | \n",
" CO | \n",
" 2/15/1931 14:00 | \n",
"
\n",
" \n",
" 4 | \n",
" Abilene | \n",
" NaN | \n",
" DISK | \n",
" KS | \n",
" 6/1/1931 13:00 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" city colors_reported shape_reported state time\n",
"0 City Colors Reported Shape Reported State Time\n",
"1 Ithaca NaN TRIANGLE NY 6/1/1930 22:00\n",
"2 Willingboro NaN OTHER NJ 6/30/1930 20:00\n",
"3 Holyoke NaN OVAL CO 2/15/1931 14:00\n",
"4 Abilene NaN DISK KS 6/1/1931 13:00"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# let's look at DataFrame\n",
"ufo.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Replace"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# read another dataset \n",
"fm = pd.read_csv(\"../data/framingham.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" male | \n",
" age | \n",
" education | \n",
" currentSmoker | \n",
" cigsPerDay | \n",
" BPMeds | \n",
" prevalentStroke | \n",
" prevalentHyp | \n",
" diabetes | \n",
" totChol | \n",
" sysBP | \n",
" diaBP | \n",
" BMI | \n",
" heartRate | \n",
" glucose | \n",
" TenYearCHD | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" 39 | \n",
" 4.0 | \n",
" 0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 195.0 | \n",
" 106.0 | \n",
" 70.0 | \n",
" 26.97 | \n",
" 80.0 | \n",
" 77.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1 | \n",
" 0 | \n",
" 46 | \n",
" 2.0 | \n",
" 0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 250.0 | \n",
" 121.0 | \n",
" 81.0 | \n",
" 28.73 | \n",
" 95.0 | \n",
" 76.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 2 | \n",
" 1 | \n",
" 48 | \n",
" 1.0 | \n",
" 1 | \n",
" 20.0 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 245.0 | \n",
" 127.5 | \n",
" 80.0 | \n",
" 25.34 | \n",
" 75.0 | \n",
" 70.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 3 | \n",
" 0 | \n",
" 61 | \n",
" 3.0 | \n",
" 1 | \n",
" 30.0 | \n",
" 0.0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 225.0 | \n",
" 150.0 | \n",
" 95.0 | \n",
" 28.58 | \n",
" 65.0 | \n",
" 103.0 | \n",
" 1 | \n",
"
\n",
" \n",
" 4 | \n",
" 0 | \n",
" 46 | \n",
" 3.0 | \n",
" 1 | \n",
" 23.0 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 285.0 | \n",
" 130.0 | \n",
" 84.0 | \n",
" 23.10 | \n",
" 85.0 | \n",
" 85.0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" male age education currentSmoker cigsPerDay BPMeds prevalentStroke \\\n",
"0 1 39 4.0 0 0.0 0.0 0 \n",
"1 0 46 2.0 0 0.0 0.0 0 \n",
"2 1 48 1.0 1 20.0 0.0 0 \n",
"3 0 61 3.0 1 30.0 0.0 0 \n",
"4 0 46 3.0 1 23.0 0.0 0 \n",
"\n",
" prevalentHyp diabetes totChol sysBP diaBP BMI heartRate glucose \\\n",
"0 0 0 195.0 106.0 70.0 26.97 80.0 77.0 \n",
"1 0 0 250.0 121.0 81.0 28.73 95.0 76.0 \n",
"2 0 0 245.0 127.5 80.0 25.34 75.0 70.0 \n",
"3 1 0 225.0 150.0 95.0 28.58 65.0 103.0 \n",
"4 0 0 285.0 130.0 84.0 23.10 85.0 85.0 \n",
"\n",
" TenYearCHD \n",
"0 0 \n",
"1 0 \n",
"2 0 \n",
"3 1 \n",
"4 0 "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# examine first few rows \n",
"fm.head() "
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# first rename `male` to `sex` \n",
"fm.rename(columns={\"male\": \"sex\"}, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" sex | \n",
" age | \n",
" education | \n",
" currentSmoker | \n",
" cigsPerDay | \n",
" BPMeds | \n",
" prevalentStroke | \n",
" prevalentHyp | \n",
" diabetes | \n",
" totChol | \n",
" sysBP | \n",
" diaBP | \n",
" BMI | \n",
" heartRate | \n",
" glucose | \n",
" TenYearCHD | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" 39 | \n",
" 4.0 | \n",
" 0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 195.0 | \n",
" 106.0 | \n",
" 70.0 | \n",
" 26.97 | \n",
" 80.0 | \n",
" 77.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1 | \n",
" 0 | \n",
" 46 | \n",
" 2.0 | \n",
" 0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 250.0 | \n",
" 121.0 | \n",
" 81.0 | \n",
" 28.73 | \n",
" 95.0 | \n",
" 76.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 2 | \n",
" 1 | \n",
" 48 | \n",
" 1.0 | \n",
" 1 | \n",
" 20.0 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 245.0 | \n",
" 127.5 | \n",
" 80.0 | \n",
" 25.34 | \n",
" 75.0 | \n",
" 70.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 3 | \n",
" 0 | \n",
" 61 | \n",
" 3.0 | \n",
" 1 | \n",
" 30.0 | \n",
" 0.0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
" 225.0 | \n",
" 150.0 | \n",
" 95.0 | \n",
" 28.58 | \n",
" 65.0 | \n",
" 103.0 | \n",
" 1 | \n",
"
\n",
" \n",
" 4 | \n",
" 0 | \n",
" 46 | \n",
" 3.0 | \n",
" 1 | \n",
" 23.0 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 285.0 | \n",
" 130.0 | \n",
" 84.0 | \n",
" 23.10 | \n",
" 85.0 | \n",
" 85.0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" sex age education currentSmoker cigsPerDay BPMeds prevalentStroke \\\n",
"0 1 39 4.0 0 0.0 0.0 0 \n",
"1 0 46 2.0 0 0.0 0.0 0 \n",
"2 1 48 1.0 1 20.0 0.0 0 \n",
"3 0 61 3.0 1 30.0 0.0 0 \n",
"4 0 46 3.0 1 23.0 0.0 0 \n",
"\n",
" prevalentHyp diabetes totChol sysBP diaBP BMI heartRate glucose \\\n",
"0 0 0 195.0 106.0 70.0 26.97 80.0 77.0 \n",
"1 0 0 250.0 121.0 81.0 28.73 95.0 76.0 \n",
"2 0 0 245.0 127.5 80.0 25.34 75.0 70.0 \n",
"3 1 0 225.0 150.0 95.0 28.58 65.0 103.0 \n",
"4 0 0 285.0 130.0 84.0 23.10 85.0 85.0 \n",
"\n",
" TenYearCHD \n",
"0 0 \n",
"1 0 \n",
"2 0 \n",
"3 1 \n",
"4 0 "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Now take a look at dataset \n",
"fm.head() "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Replace Value for Better Understanding of Dataset\n",
"__sex__\n",
"* 1 = Male \n",
"* 0 = Female \n",
"\n",
"__diabetes__\n",
"* 1 = Yes \n",
"* 0 = No "
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# replace sex column value\n",
"fm['sex'].replace({1: \"male\", 0: \"female\"}, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"# replace diabetes column value \n",
"fm['diabetes'].replace({1: \"yes\", 0: \"no\"}, inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" sex | \n",
" age | \n",
" education | \n",
" currentSmoker | \n",
" cigsPerDay | \n",
" BPMeds | \n",
" prevalentStroke | \n",
" prevalentHyp | \n",
" diabetes | \n",
" totChol | \n",
" sysBP | \n",
" diaBP | \n",
" BMI | \n",
" heartRate | \n",
" glucose | \n",
" TenYearCHD | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" male | \n",
" 39 | \n",
" 4.0 | \n",
" 0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" no | \n",
" 195.0 | \n",
" 106.0 | \n",
" 70.0 | \n",
" 26.97 | \n",
" 80.0 | \n",
" 77.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1 | \n",
" female | \n",
" 46 | \n",
" 2.0 | \n",
" 0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" no | \n",
" 250.0 | \n",
" 121.0 | \n",
" 81.0 | \n",
" 28.73 | \n",
" 95.0 | \n",
" 76.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 2 | \n",
" male | \n",
" 48 | \n",
" 1.0 | \n",
" 1 | \n",
" 20.0 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" no | \n",
" 245.0 | \n",
" 127.5 | \n",
" 80.0 | \n",
" 25.34 | \n",
" 75.0 | \n",
" 70.0 | \n",
" 0 | \n",
"
\n",
" \n",
" 3 | \n",
" female | \n",
" 61 | \n",
" 3.0 | \n",
" 1 | \n",
" 30.0 | \n",
" 0.0 | \n",
" 0 | \n",
" 1 | \n",
" no | \n",
" 225.0 | \n",
" 150.0 | \n",
" 95.0 | \n",
" 28.58 | \n",
" 65.0 | \n",
" 103.0 | \n",
" 1 | \n",
"
\n",
" \n",
" 4 | \n",
" female | \n",
" 46 | \n",
" 3.0 | \n",
" 1 | \n",
" 23.0 | \n",
" 0.0 | \n",
" 0 | \n",
" 0 | \n",
" no | \n",
" 285.0 | \n",
" 130.0 | \n",
" 84.0 | \n",
" 23.10 | \n",
" 85.0 | \n",
" 85.0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" sex age education currentSmoker cigsPerDay BPMeds prevalentStroke \\\n",
"0 male 39 4.0 0 0.0 0.0 0 \n",
"1 female 46 2.0 0 0.0 0.0 0 \n",
"2 male 48 1.0 1 20.0 0.0 0 \n",
"3 female 61 3.0 1 30.0 0.0 0 \n",
"4 female 46 3.0 1 23.0 0.0 0 \n",
"\n",
" prevalentHyp diabetes totChol sysBP diaBP BMI heartRate glucose \\\n",
"0 0 no 195.0 106.0 70.0 26.97 80.0 77.0 \n",
"1 0 no 250.0 121.0 81.0 28.73 95.0 76.0 \n",
"2 0 no 245.0 127.5 80.0 25.34 75.0 70.0 \n",
"3 1 no 225.0 150.0 95.0 28.58 65.0 103.0 \n",
"4 0 no 285.0 130.0 84.0 23.10 85.0 85.0 \n",
"\n",
" TenYearCHD \n",
"0 0 \n",
"1 0 \n",
"2 0 \n",
"3 1 \n",
"4 0 "
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Examine dataset\n",
"fm.head() "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
},
"latex_envs": {
"LaTeX_envs_menu_present": true,
"autoclose": false,
"autocomplete": true,
"bibliofile": "biblio.bib",
"cite_by": "apalike",
"current_citInitial": 1,
"eqLabelWithNumbers": true,
"eqNumInitial": 1,
"hotkeys": {
"equation": "Ctrl-E",
"itemize": "Ctrl-I"
},
"labels_anchors": false,
"latex_user_defs": false,
"report_style_numbering": false,
"user_envs_cfg": false
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}